Quantitative Property-Property Relationship for Screening-Level Prediction of Intrinsic Clearance of Volatile Organic Chemicals in Rats and Its Integration within PBPK Models to Predict Inhalation Pharmacokinetics in Humans

Joint Authors

Krishnan, Kannan
Peyret, Thomas

Source

Journal of Toxicology

Issue

Vol. 2012, Issue 2012 (31 Dec. 2012), pp.1-22, 22 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2012-05-22

Country of Publication

Egypt

No. of Pages

22

Main Subjects

Pharmacy, Health & Medical Sciences
Medicine

Abstract EN

The objectives of this study were (i) to develop a screening-level Quantitative property-property relationship (QPPR) for intrinsic clearance (CLint) obtained from in vivo animal studies and (ii) to incorporate it with human physiology in a PBPK model for predicting the inhalation pharmacokinetics of VOCs.

CLint, calculated as the ratio of the in vivo Vmax (μmol/h/kg bw rat) to the Km (μM), was obtained for 26 VOCs from the literature.

The QPPR model resulting from stepwise linear regression analysis passed the validation step (R2=0.8; leave-one-out cross-validation Q2=0.75) for CLint normalized to the phospholipid (PL) affinity of the VOCs.

The QPPR facilitated the calculation of CLint (L PL/h/kg bw rat) from the input data on log Pow, log blood: water PC and ionization potential.

The predictions of the QPPR as lower and upper bounds of the 95% mean confidence intervals (LMCI and UMCI, resp.) were then integrated within a human PBPK model.

The ratio of the maximum (using LMCI for CLint) to minimum (using UMCI for CLint) AUC predicted by the QPPR-PBPK model was 1.36±0.4 and ranged from 1.06 (1,1-dichloroethylene) to 2.8 (isoprene).

Overall, the integrated QPPR-PBPK modeling method developed in this study is a pragmatic way of characterizing the impact of the lack of knowledge of CLint in predicting human pharmacokinetics of VOCs, as well as the impact of prediction uncertainty of CLint on human pharmacokinetics of VOCs.

American Psychological Association (APA)

Peyret, Thomas& Krishnan, Kannan. 2012. Quantitative Property-Property Relationship for Screening-Level Prediction of Intrinsic Clearance of Volatile Organic Chemicals in Rats and Its Integration within PBPK Models to Predict Inhalation Pharmacokinetics in Humans. Journal of Toxicology،Vol. 2012, no. 2012, pp.1-22.
https://search.emarefa.net/detail/BIM-460442

Modern Language Association (MLA)

Peyret, Thomas& Krishnan, Kannan. Quantitative Property-Property Relationship for Screening-Level Prediction of Intrinsic Clearance of Volatile Organic Chemicals in Rats and Its Integration within PBPK Models to Predict Inhalation Pharmacokinetics in Humans. Journal of Toxicology No. 2012 (2012), pp.1-22.
https://search.emarefa.net/detail/BIM-460442

American Medical Association (AMA)

Peyret, Thomas& Krishnan, Kannan. Quantitative Property-Property Relationship for Screening-Level Prediction of Intrinsic Clearance of Volatile Organic Chemicals in Rats and Its Integration within PBPK Models to Predict Inhalation Pharmacokinetics in Humans. Journal of Toxicology. 2012. Vol. 2012, no. 2012, pp.1-22.
https://search.emarefa.net/detail/BIM-460442

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-460442