Comparative Effects of Biodynes, Tocotrienol-Rich Fraction, and Tocopherol in Enhancing Collagen Synthesis and Inhibiting Collagen Degradation in Stress-Induced Premature Senescence Model of Human Diploid Fibroblasts

Joint Authors

Mohd Yusof, Yasmin Anum
Makpol, Suzana
Ngah, Wan Zurinah Wan
Ismail, Zahariah
Khor, Shy Cian
Jam, Faidruz Azura

Source

Oxidative Medicine and Cellular Longevity

Issue

Vol. 2013, Issue 2013 (31 Dec. 2013), pp.1-8, 8 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2013-12-14

Country of Publication

Egypt

No. of Pages

8

Main Subjects

Natural & Life Sciences (Multidisciplinary)
Biology

Abstract EN

Biodynes, tocotrienol-rich fraction (TRF), and tocopherol have shown antiaging properties.

However, the combined effects of these compounds on skin aging are yet to be investigated.

This study aimed to elucidate the skin aging effects of biodynes, TRF, and tocopherol on stress-induced premature senescence (SIPS) model of human diploid fibroblasts (HDFs) by determining the expression of collagen and MMPs at gene and protein levels.

Primary HDFs were treated with biodynes, TRF, and tocopherol prior to hydrogen peroxide (H2O2) exposure.

The expression of COL1A1, COL3A1, MMP1, MMP2, MMP3, and MMP9 genes was determined by qRT-PCR.

Type I and type III procollagen proteins were measured by Western blotting while the activities of MMPs were quantified by fluorometric Sensolyte MMP Kit.

Our results showed that biodynes, TRF, and tocopherol upregulated collagen genes and downregulated MMP genes (P<0.05).

Type I procollagen and type III procollagen protein levels were significantly increased in response to biodynes, TRF, and tocopherol treatment (P<0.05) with reduction in MMP-1, MMP-2, MMP-3, and MMP-9 activities (P<0.05).

These findings indicated that biodynes, TRF, and tocopherol effectively enhanced collagen synthesis and inhibited collagen degradation and therefore may protect the skin from aging.

American Psychological Association (APA)

Makpol, Suzana& Jam, Faidruz Azura& Khor, Shy Cian& Ismail, Zahariah& Mohd Yusof, Yasmin Anum& Ngah, Wan Zurinah Wan. 2013. Comparative Effects of Biodynes, Tocotrienol-Rich Fraction, and Tocopherol in Enhancing Collagen Synthesis and Inhibiting Collagen Degradation in Stress-Induced Premature Senescence Model of Human Diploid Fibroblasts. Oxidative Medicine and Cellular Longevity،Vol. 2013, no. 2013, pp.1-8.
https://search.emarefa.net/detail/BIM-461525

Modern Language Association (MLA)

Makpol, Suzana…[et al.]. Comparative Effects of Biodynes, Tocotrienol-Rich Fraction, and Tocopherol in Enhancing Collagen Synthesis and Inhibiting Collagen Degradation in Stress-Induced Premature Senescence Model of Human Diploid Fibroblasts. Oxidative Medicine and Cellular Longevity No. 2013 (2013), pp.1-8.
https://search.emarefa.net/detail/BIM-461525

American Medical Association (AMA)

Makpol, Suzana& Jam, Faidruz Azura& Khor, Shy Cian& Ismail, Zahariah& Mohd Yusof, Yasmin Anum& Ngah, Wan Zurinah Wan. Comparative Effects of Biodynes, Tocotrienol-Rich Fraction, and Tocopherol in Enhancing Collagen Synthesis and Inhibiting Collagen Degradation in Stress-Induced Premature Senescence Model of Human Diploid Fibroblasts. Oxidative Medicine and Cellular Longevity. 2013. Vol. 2013, no. 2013, pp.1-8.
https://search.emarefa.net/detail/BIM-461525

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-461525