Electrostrictive Energy Conversion of Polyurethane with Different Hard Segment Aggregations

Joint Authors

Putson, Chatchai
Sukwisute, Pisan
Koyvanitch, Krit
Muensit, Nantakan

Source

Advances in Materials Science and Engineering

Issue

Vol. 2013, Issue 2013 (31 Dec. 2013), pp.1-8, 8 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2013-10-26

Country of Publication

Egypt

No. of Pages

8

Main Subjects

Engineering Sciences and Information Technology

Abstract EN

This work reported the electrostriction of polyurethane (PU) with different aggregations of hard segments (HS) controlled by dissimilar solvents: N,N-dimethylformamide (DMF) and a mixture of dimethyl sulfoxide and acetone denoted as DMSOA.

By using atomic force microscopy and differential scanning calorimetry, the PU/DMSOA was observed to have larger HS domains and smoother surface when compared to those of the PU/DMF.

The increase of HS domain formation led to the increase of transition temperature, enthalpy of transition, and dielectric constant (0.1 Hz).

For the applied electric field below 4 MV/m, the PU/DMSOA had higher electric-field-induced strain and it was opposite otherwise.

Dielectric constant and Young’s modulus for all the samples were measured.

It was found that PU/DMF had less dielectric constant, leading to its lower electrostrictive coefficient at low frequency.

At higher frequencies the electrostrictive coefficient was independent of the solvent type.

Consequently, their figure of merit and power harvesting density were similar.

However, the energy conversion was well exhibited for low frequency range and low electric field.

The PU/DMSOA should, therefore, be promoted because of high vaporizing temperature of the DMSOA, good electrostriction for low frequency, and high induced strain for low applied electric field.

American Psychological Association (APA)

Sukwisute, Pisan& Koyvanitch, Krit& Putson, Chatchai& Muensit, Nantakan. 2013. Electrostrictive Energy Conversion of Polyurethane with Different Hard Segment Aggregations. Advances in Materials Science and Engineering،Vol. 2013, no. 2013, pp.1-8.
https://search.emarefa.net/detail/BIM-463080

Modern Language Association (MLA)

Sukwisute, Pisan…[et al.]. Electrostrictive Energy Conversion of Polyurethane with Different Hard Segment Aggregations. Advances in Materials Science and Engineering No. 2013 (2013), pp.1-8.
https://search.emarefa.net/detail/BIM-463080

American Medical Association (AMA)

Sukwisute, Pisan& Koyvanitch, Krit& Putson, Chatchai& Muensit, Nantakan. Electrostrictive Energy Conversion of Polyurethane with Different Hard Segment Aggregations. Advances in Materials Science and Engineering. 2013. Vol. 2013, no. 2013, pp.1-8.
https://search.emarefa.net/detail/BIM-463080

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-463080