Biomechanics of Lateral Interbody Spacers : Going Wider for Going Stiffer

Joint Authors

Dooley, Zachary A.
Peterson, Mark D.
Parikh, Rachit D.
Pimenta, Luiz
Turner, Alexander W. L.

Source

The Scientific World Journal

Issue

Vol. 2012, Issue 2012 (31 Dec. 2012), pp.1-6, 6 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2012-11-13

Country of Publication

Egypt

No. of Pages

6

Main Subjects

Natural & Life Sciences (Multidisciplinary)
Medicine
Information Technology and Computer Science

Abstract EN

This study investigates the biomechanical stability of a large interbody spacer inserted by a lateral approach and compares the biomechanical differences with the more conventional transforaminal interbody fusion (TLIF), with and without supplemental pedicle screw (PS) fixation.

Twenty-four L2-L3 functional spinal units (FSUs) were tested with three interbody cage options: (i) 18 mm XLIF cage, (ii) 26 mm XLIF cage, and (iii) 11 mm TLIF cage.

Each spacer was tested without supplemental fixation, and with unilateral and bilateral PS fixation.

Specimens were subjected to multidirectional nondestructive flexibility tests to 7.5 N·m.

The range of motion (ROM) differences were first examined within the same group (per cage) using repeated-measures ANOVA, and then compared between cage groups.

The 26 mm XLIF cage provided greater stability than the 18 mm XLIF cage with unilateral PS and 11 mm TLIF cage with bilateral PS.

The 18 mm XLIF cage with unilateral PS provided greater stability than the 11 mm TLIF cage with bilateral PS.

This study suggests that wider lateral spacers are biomechanically stable and offer the option to be used with less or even no supplemental fixation for interbody lumbar fusion.

American Psychological Association (APA)

Pimenta, Luiz& Turner, Alexander W. L.& Dooley, Zachary A.& Parikh, Rachit D.& Peterson, Mark D.. 2012. Biomechanics of Lateral Interbody Spacers : Going Wider for Going Stiffer. The Scientific World Journal،Vol. 2012, no. 2012, pp.1-6.
https://search.emarefa.net/detail/BIM-467613

Modern Language Association (MLA)

Pimenta, Luiz…[et al.]. Biomechanics of Lateral Interbody Spacers : Going Wider for Going Stiffer. The Scientific World Journal No. 2012 (2012), pp.1-6.
https://search.emarefa.net/detail/BIM-467613

American Medical Association (AMA)

Pimenta, Luiz& Turner, Alexander W. L.& Dooley, Zachary A.& Parikh, Rachit D.& Peterson, Mark D.. Biomechanics of Lateral Interbody Spacers : Going Wider for Going Stiffer. The Scientific World Journal. 2012. Vol. 2012, no. 2012, pp.1-6.
https://search.emarefa.net/detail/BIM-467613

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-467613