Fundamental Mechanistic Understanding of Electrocatalysis of Oxygen Reduction on Pt and Non-Pt Surfaces : Acid versus Alkaline Media

Joint Authors

Mukerjee, Sanjeev
Ramaswamy, Nagappan

Source

Advances in Physical Chemistry

Issue

Vol. 2012, Issue 2012 (31 Dec. 2012), pp.1-17, 17 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2012-03-20

Country of Publication

Egypt

No. of Pages

17

Main Subjects

Chemistry

Abstract EN

Complex electrochemical reactions such as Oxygen Reduction Reaction (ORR) involving multi-electron transfer is an electrocatalytic inner-sphere electron transfer process that exhibit strong dependence on the nature of the electrode surface.

This criterion (along with required stability in acidic electrolytes) has largely limited ORR catalysts to the platinum-based surfaces.

New evidence in alkaline media, discussed here, throws light on the involvement of surface-independent outer-sphere electron transfer component in the overall electrocatalytic process.

This surface non-specificity gives rise to the possibility of using a wide-range of non-noble metal surfaces as electrode materials for ORR in alkaline media.

However, this outer-sphere process predominantly leads only to peroxide intermediate as the final product.

The importance of promoting the electrocatalytic inner-sphere electron transfer by facilitation of direct adsorption of molecular oxygen on the active site is emphasized by using pyrolyzed metal porphyrins as electrocatalysts.

A comparison of ORR reaction mechanisms between acidic and alkaline conditions is elucidated here.

The primary advantage of performing ORR in alkaline media is found to be the enhanced activation of the peroxide intermediate on the active site that enables the complete four-electron transfer.

ORR reaction schemes involving both outer- and inner-sphere electron transfer mechanisms are proposed.

American Psychological Association (APA)

Ramaswamy, Nagappan& Mukerjee, Sanjeev. 2012. Fundamental Mechanistic Understanding of Electrocatalysis of Oxygen Reduction on Pt and Non-Pt Surfaces : Acid versus Alkaline Media. Advances in Physical Chemistry،Vol. 2012, no. 2012, pp.1-17.
https://search.emarefa.net/detail/BIM-475869

Modern Language Association (MLA)

Ramaswamy, Nagappan& Mukerjee, Sanjeev. Fundamental Mechanistic Understanding of Electrocatalysis of Oxygen Reduction on Pt and Non-Pt Surfaces : Acid versus Alkaline Media. Advances in Physical Chemistry No. 2012 (2012), pp.1-17.
https://search.emarefa.net/detail/BIM-475869

American Medical Association (AMA)

Ramaswamy, Nagappan& Mukerjee, Sanjeev. Fundamental Mechanistic Understanding of Electrocatalysis of Oxygen Reduction on Pt and Non-Pt Surfaces : Acid versus Alkaline Media. Advances in Physical Chemistry. 2012. Vol. 2012, no. 2012, pp.1-17.
https://search.emarefa.net/detail/BIM-475869

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-475869