Prediction of Human's Ability in Sound Localization Based on the Statistical Properties of Spike Trains along the Brainstem Auditory Pathway

Joint Authors

Krips, Ram
Furst, Miriam

Source

Computational Intelligence and Neuroscience

Issue

Vol. 2014, Issue 2014 (31 Dec. 2014), pp.1-11, 11 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2014-03-31

Country of Publication

Egypt

No. of Pages

11

Main Subjects

Biology

Abstract EN

The minimum audible angle test which is commonly used for evaluating human localization ability depends on interaural time delay, interaural level differences, and spectral information about the acoustic stimulus.

These physical properties are estimated at different stages along the brainstem auditory pathway.

The interaural time delay is ambiguous at certain frequencies, thus confusion arises as to the source of these frequencies.

It is assumed that in a typical minimum audible angle experiment, the brain acts as an unbiased optimal estimator and thus the human performance can be obtained by deriving optimal lower bounds.

Two types of lower bounds are tested: the Cramer-Rao and the Barankin.

The Cramer-Rao bound only takes into account the approximation of the true direction of the stimulus; the Barankin bound considers other possible directions that arise from the ambiguous phase information.

These lower bounds are derived at the output of the auditory nerve and of the superior olivary complex where binaural cues are estimated.

An agreement between human experimental data was obtained only when the superior olivary complex was considered and the Barankin lower bound was used.

This result suggests that sound localization is estimated by the auditory nuclei using ambiguous binaural information.

American Psychological Association (APA)

Krips, Ram& Furst, Miriam. 2014. Prediction of Human's Ability in Sound Localization Based on the Statistical Properties of Spike Trains along the Brainstem Auditory Pathway. Computational Intelligence and Neuroscience،Vol. 2014, no. 2014, pp.1-11.
https://search.emarefa.net/detail/BIM-482054

Modern Language Association (MLA)

Krips, Ram& Furst, Miriam. Prediction of Human's Ability in Sound Localization Based on the Statistical Properties of Spike Trains along the Brainstem Auditory Pathway. Computational Intelligence and Neuroscience No. 2014 (2014), pp.1-11.
https://search.emarefa.net/detail/BIM-482054

American Medical Association (AMA)

Krips, Ram& Furst, Miriam. Prediction of Human's Ability in Sound Localization Based on the Statistical Properties of Spike Trains along the Brainstem Auditory Pathway. Computational Intelligence and Neuroscience. 2014. Vol. 2014, no. 2014, pp.1-11.
https://search.emarefa.net/detail/BIM-482054

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-482054