Nitroglycerine-Induced Nitrate Tolerance Compromises Propofol Protection of the Endothelial Cells against TNF-α : The Role of PKC-β2 and NADPH Oxidase

Joint Authors

Zhang, Liangqing
Qiao, Xin
Yang, Qing-jun
Liu, Huimin
Du, Yun
Lei, Shao-Qing
Su, Wating
Xia, Zhong-yuan
Xia, Zhengyuan
Xu, Jin-Jin

Source

Oxidative Medicine and Cellular Longevity

Issue

Vol. 2013, Issue 2013 (31 Dec. 2013), pp.1-9, 9 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2013-12-12

Country of Publication

Egypt

No. of Pages

9

Main Subjects

Natural & Life Sciences (Multidisciplinary)
Biology

Abstract EN

Continuous treatment with organic nitrates causes nitrate tolerance and endothelial dysfunction, which is involved with protein kinase C (PKC) signal pathway and NADPH oxidase activation.

We determined whether chronic administration with nitroglycerine compromises the protective effects of propofol against tumor necrosis factor (TNF-) induced toxicity in endothelial cells by PKC-β2 dependent NADPH oxidase activation.

Primary cultured human umbilical vein endothelial cells were either treated or untreated with TNF-α (40 ng/mL) alone or in the presence of the specific PKC-β2 inhibitor CGP53353 (1 μM)), nitroglycerine (10 μM), propofol (100 μM), propofol plus nitroglycerin, or CGP53353 plus nitroglycerine, respectively, for 24 hours.

TNF-α increased the levels of superoxide, Nox (nitrate and nitrite), malondialdehyde, and nitrotyrosine production, accompanied by increased protein expression of p-PKC-β2, gP91phox, and endothelial cell apoptosis, whereas all these changes were further enhanced by nitroglycerine.

CGP53353 and propofol, respectively, reduced TNF-α induced oxidative stress and cell toxicity.

CGP53353 completely prevented TNF-α induced oxidative stress and cell toxicity in the presence or absence of nitroglycerine, while the protective effects of propofol were neutralized by nitroglycerine.

It is concluded that nitroglycerine comprises the protective effects of propofol against TNF-α stimulation in endothelial cells, primarily through PKC-β2 dependent NADPH oxidase activation.

American Psychological Association (APA)

Lei, Shao-Qing& Su, Wating& Liu, Huimin& Xu, Jin-Jin& Xia, Zhong-yuan& Yang, Qing-jun…[et al.]. 2013. Nitroglycerine-Induced Nitrate Tolerance Compromises Propofol Protection of the Endothelial Cells against TNF-α : The Role of PKC-β2 and NADPH Oxidase. Oxidative Medicine and Cellular Longevity،Vol. 2013, no. 2013, pp.1-9.
https://search.emarefa.net/detail/BIM-489772

Modern Language Association (MLA)

Lei, Shao-Qing…[et al.]. Nitroglycerine-Induced Nitrate Tolerance Compromises Propofol Protection of the Endothelial Cells against TNF-α : The Role of PKC-β2 and NADPH Oxidase. Oxidative Medicine and Cellular Longevity No. 2013 (2013), pp.1-9.
https://search.emarefa.net/detail/BIM-489772

American Medical Association (AMA)

Lei, Shao-Qing& Su, Wating& Liu, Huimin& Xu, Jin-Jin& Xia, Zhong-yuan& Yang, Qing-jun…[et al.]. Nitroglycerine-Induced Nitrate Tolerance Compromises Propofol Protection of the Endothelial Cells against TNF-α : The Role of PKC-β2 and NADPH Oxidase. Oxidative Medicine and Cellular Longevity. 2013. Vol. 2013, no. 2013, pp.1-9.
https://search.emarefa.net/detail/BIM-489772

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-489772