Insights into the Alteration of Osteoblast Mechanical Properties upon Adhesion on Chitosan

Joint Authors

Athanassiou, George M.
Moutzouri, Antonia G.

Source

BioMed Research International

Issue

Vol. 2014, Issue 2014 (31 Dec. 2014), pp.1-8, 8 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2014-05-29

Country of Publication

Egypt

No. of Pages

8

Main Subjects

Medicine

Abstract EN

Cell adhesion on substrates is accompanied by significant changes in shape and cytoskeleton organization, which affect subsequent cellular and tissue responses, determining the long-term success of an implant.

Alterations in osteoblast stiffness upon adhesion on orthopaedic implants with different surface chemical composition and topography are, thus, of central interest in the field of bone implant research.

This work aimed to study the mechanical response of osteoblasts upon adhesion on chitosan-coated glass surfaces and to investigate possible correlations with the level of adhesion, spreading, and cytoskeleton reorganization.

Using the micropipette aspiration technique, the osteoblast elastic modulus was found higher on chitosan-coated than on uncoated control substrates, and it was found to increase in the course of spreading for both substrates.

The cell-surface contact area was measured throughout several time points of adhesion to quantify cell spreading kinetics.

Significant differences were found between chitosan and control surfaces regarding the response of cell spreading, while both groups displayed a sigmoidal kinetical behavior with an initially elevated spreading rate which stabilizes in the second hour of attachment.

Actin filament structural changes were confirmed after observation with confocal microscope.

Biomaterial surface modification can enhance osteoblast mechanical response and induce favorable structural organization for the implant integration.

American Psychological Association (APA)

Moutzouri, Antonia G.& Athanassiou, George M.. 2014. Insights into the Alteration of Osteoblast Mechanical Properties upon Adhesion on Chitosan. BioMed Research International،Vol. 2014, no. 2014, pp.1-8.
https://search.emarefa.net/detail/BIM-494966

Modern Language Association (MLA)

Moutzouri, Antonia G.& Athanassiou, George M.. Insights into the Alteration of Osteoblast Mechanical Properties upon Adhesion on Chitosan. BioMed Research International No. 2014 (2014), pp.1-8.
https://search.emarefa.net/detail/BIM-494966

American Medical Association (AMA)

Moutzouri, Antonia G.& Athanassiou, George M.. Insights into the Alteration of Osteoblast Mechanical Properties upon Adhesion on Chitosan. BioMed Research International. 2014. Vol. 2014, no. 2014, pp.1-8.
https://search.emarefa.net/detail/BIM-494966

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-494966