Impacts of Aerosol Particle Size Distribution and Land Cover Land Use on Precipitation in a Coastal Urban Environment Using a Cloud-Resolving Mesoscale Model

Joint Authors

Hosannah, Nathan
Gonzalez, Jorge E.

Source

Advances in Meteorology

Issue

Vol. 2014, Issue 2014 (31 Dec. 2014), pp.1-17, 17 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2014-01-14

Country of Publication

Egypt

No. of Pages

17

Main Subjects

Physics

Abstract EN

Urban environments influence precipitation formation via response to dynamic effects, while aerosols are intrinsically necessary for rainfall formation; however, the partial contributions of each on urban coastal precipitation are not yet known.

Here, the authors use aerosol particle size distributions derived from the NASA aerosol robotic network (AERONET) to estimate submicron cloud condensation nuclei (CCN) and supermicron CCN (GCCN) for ingestion in the regional atmospheric modeling system (RAMS).

High resolution land data from the National Land Cover Database (NLCD) were assimilated into RAMS to provide modern land cover and land use (LCLU).

The first two of eight total simulations were month long runs for July 2007, one with constant PSD values and the second with AERONET PSDs updated at times consistent with observations.

The third and fourth runs mirrored the first two simulations for “No City” LCLU.

Four more runs addressed a one-day precipitation event under City and No City LCLU, and two different PSD conditions.

Results suggest that LCLU provides the dominant forcing for urban precipitation, affecting precipitation rates, rainfall amounts, and spatial precipitation patterns.

PSD then acts to modify cloud physics.

Also, precipitation forecasting was significantly improved under observed PSD and current LCLU conditions.

American Psychological Association (APA)

Hosannah, Nathan& Gonzalez, Jorge E.. 2014. Impacts of Aerosol Particle Size Distribution and Land Cover Land Use on Precipitation in a Coastal Urban Environment Using a Cloud-Resolving Mesoscale Model. Advances in Meteorology،Vol. 2014, no. 2014, pp.1-17.
https://search.emarefa.net/detail/BIM-506836

Modern Language Association (MLA)

Hosannah, Nathan& Gonzalez, Jorge E.. Impacts of Aerosol Particle Size Distribution and Land Cover Land Use on Precipitation in a Coastal Urban Environment Using a Cloud-Resolving Mesoscale Model. Advances in Meteorology No. 2014 (2014), pp.1-17.
https://search.emarefa.net/detail/BIM-506836

American Medical Association (AMA)

Hosannah, Nathan& Gonzalez, Jorge E.. Impacts of Aerosol Particle Size Distribution and Land Cover Land Use on Precipitation in a Coastal Urban Environment Using a Cloud-Resolving Mesoscale Model. Advances in Meteorology. 2014. Vol. 2014, no. 2014, pp.1-17.
https://search.emarefa.net/detail/BIM-506836

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-506836