Self-Organization Schemes towards Thermodynamic Stable Bulk Heterojunction Morphologies : A Perspective on Future Fabrication Strategies of Polymer Photovoltaic Architectures

Joint Authors

Hakem, I. F.
Bockstaller, M. R.
Benmouna, A.
Benmouna, R.

Source

Advances in Physical Chemistry

Issue

Vol. 2013, Issue 2013 (31 Dec. 2013), pp.1-8, 8 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2013-04-16

Country of Publication

Egypt

No. of Pages

8

Main Subjects

Chemistry

Abstract EN

Research efforts to improve our understanding of electronic polymers are developing fast because of their promising advantages over silicon in photovoltaic solar cells.

A major challenge in the development of polymer photovoltaic devices is the viable fabrication strategies of stable bulk heterojunction architecture that will retain functionality during the expected lifetime of the device.

Block copolymer self-assembly strategies have attracted particular attention as a scalable means toward thermodynamically stable microstructures that combine the ideal geometrical characteristics of a bulk heterojunction with the fortuitous combination of properties of the constituent blocks.

Two primary routes that have been proposed in the literature involve the coassembly of block copolymers in which one domain is a hole conductor with the electron-conducting filler (such as fullerene derivatives) or the self-assembly of block copolymers in which the respective blocks function as hole and electron conductor.

Either way has proven difficult because of the combination of synthetic challenges as well as the missing understanding of the complex governing parameters that control structure formation in semiconducting block copolymer blends.

This paper summarizes important findings relating to structure formation of block copolymer and block copolymer/nanoparticle blend assembly that should provide a foundation for the future design of block copolymer-based photovoltaic systems.

American Psychological Association (APA)

Benmouna, A.& Benmouna, R.& Bockstaller, M. R.& Hakem, I. F.. 2013. Self-Organization Schemes towards Thermodynamic Stable Bulk Heterojunction Morphologies : A Perspective on Future Fabrication Strategies of Polymer Photovoltaic Architectures. Advances in Physical Chemistry،Vol. 2013, no. 2013, pp.1-8.
https://search.emarefa.net/detail/BIM-510538

Modern Language Association (MLA)

Benmouna, A.…[et al.]. Self-Organization Schemes towards Thermodynamic Stable Bulk Heterojunction Morphologies : A Perspective on Future Fabrication Strategies of Polymer Photovoltaic Architectures. Advances in Physical Chemistry No. 2013 (2013), pp.1-8.
https://search.emarefa.net/detail/BIM-510538

American Medical Association (AMA)

Benmouna, A.& Benmouna, R.& Bockstaller, M. R.& Hakem, I. F.. Self-Organization Schemes towards Thermodynamic Stable Bulk Heterojunction Morphologies : A Perspective on Future Fabrication Strategies of Polymer Photovoltaic Architectures. Advances in Physical Chemistry. 2013. Vol. 2013, no. 2013, pp.1-8.
https://search.emarefa.net/detail/BIM-510538

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-510538