Anti-Obesity and Anti-Diabetic Effects of Acacia Polyphenol in Obese Diabetic KKAy Mice Fed High-Fat Diet

Joint Authors

Ito, Kiyomi
Ikarashi, Nobutomo
Toda, Takahiro
Okaniwa, Takehiro
Sugiyama, Kiyoshi
Ochiai, Wataru

Source

Evidence-Based Complementary and Alternative Medicine

Issue

Vol. 2011, Issue 2011 (31 Dec. 2011), pp.1-10, 10 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2011-04-14

Country of Publication

Egypt

No. of Pages

10

Main Subjects

Medicine

Abstract EN

Acacia polyphenol (AP) extracted from the bark of the black wattle tree (Acacia meansii) is rich in unique catechin-like flavan-3-ols, such as robinetinidol and fisetinidol.

The present study investigated the anti-obesity/anti-diabetic effects of AP using obese diabetic KKAy mice.

KKAy mice received either normal diet, high-fat diet or high-fat diet with additional AP for 7 weeks.

After the end of administration, body weight, plasma glucose and insulin were measured.

Furthermore, mRNA and protein expression of obesity/diabetic suppression-related genes were measured in skeletal muscle, liver and white adipose tissue.

As a result, compared to the high-fat diet group, increases in body weight, plasma glucose and insulin were significantly suppressed for AP groups.

Furthermore, compared to the high-fat diet group, mRNA expression of energy expenditure-related genes (PPARα, PPARδ, CPT1, ACO and UCP3) was significantly higher for AP groups in skeletal muscle.

Protein expressions of CPT1, ACO and UCP3 for AP groups were also significantly higher when compared to the high-fat diet group.

Moreover, AP lowered the expression of fat acid synthesis-related genes (SREBP-1c, ACC and FAS) in the liver.

AP also increased mRNA expression of adiponectin and decreased expression of TNF-α in white adipose tissue.

In conclusion, the anti-obesity actions of AP are considered attributable to increased expression of energy expenditure-related genes in skeletal muscle, and decreased fatty acid synthesis and fat intake in the liver.

These results suggest that AP is expected to be a useful plant extract for alleviating metabolic syndrome.

American Psychological Association (APA)

Ikarashi, Nobutomo& Toda, Takahiro& Okaniwa, Takehiro& Ito, Kiyomi& Ochiai, Wataru& Sugiyama, Kiyoshi. 2011. Anti-Obesity and Anti-Diabetic Effects of Acacia Polyphenol in Obese Diabetic KKAy Mice Fed High-Fat Diet. Evidence-Based Complementary and Alternative Medicine،Vol. 2011, no. 2011, pp.1-10.
https://search.emarefa.net/detail/BIM-510915

Modern Language Association (MLA)

Ikarashi, Nobutomo…[et al.]. Anti-Obesity and Anti-Diabetic Effects of Acacia Polyphenol in Obese Diabetic KKAy Mice Fed High-Fat Diet. Evidence-Based Complementary and Alternative Medicine No. 2011 (2011), pp.1-10.
https://search.emarefa.net/detail/BIM-510915

American Medical Association (AMA)

Ikarashi, Nobutomo& Toda, Takahiro& Okaniwa, Takehiro& Ito, Kiyomi& Ochiai, Wataru& Sugiyama, Kiyoshi. Anti-Obesity and Anti-Diabetic Effects of Acacia Polyphenol in Obese Diabetic KKAy Mice Fed High-Fat Diet. Evidence-Based Complementary and Alternative Medicine. 2011. Vol. 2011, no. 2011, pp.1-10.
https://search.emarefa.net/detail/BIM-510915

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-510915