Investigation of the structural, optical and electrical properties of aginse2 thin films

Joint Authors

Ali, Bushra Hashim Husayn
Mustafa, Muhammad Hamid
Ibrahim, Aysar Jumah
Khudayr, Iman Hamid

Source

Ibn al-Haitham Journal for Pure and Applied Science

Issue

Vol. 31, Issue 1 (30 Apr. 2018), pp.37-49, 13 p.

Publisher

University of Baghdad College of Education for Pure Science / Ibn al-Haitham

Publication Date

2018-04-30

Country of Publication

Iraq

No. of Pages

13

Main Subjects

Physics

Abstract EN

The Silver1 Indium1 Selenide (AgInSe2) (AIS) thin1films of (3001±20) nm thickness have been1 prepared2from the compound alloys2 using thermal evaporation2 technique onto the glass2substrate at room temperature, with a deposition rate2(3±0.1) nm2sec-1.

The2structural, optical and electrical3properties have been studied3at different annealing3temperatures (Ta=450, 550 and 650) K.

The amount3or (concentration) of the elements3(Ag, In, Se) in the prepared alloy3was verified using an energy dispersive3x-ray spectrometer (EDS)3technology.

X-ray diffraction3analysis shows that AIS alloy prepared as (powder) and the thin films3are polycrystalline of tetragonal3structure with preferential orientation3(112).

The crystalline3size increases as a function3of annealing temperature.

The atomic force3microscope (AFM) technique was used to examine3the topography and estimate3the surface roughness, also the average grain3size of the films.

The results show3that the grain size increases3with annealing3temperature.

The optical4band gap of the films lies4in the range 1.6-1.9 eV.

The films4appear to be4n-type indicating that the electrons4as a dominant charge4carrier.

The electrical conductivity4increases with a corresponding4increase in annealing4temperature prepared2from the compound alloys2 using thermal evaporation2 technique onto the glass2substrate at room temperature, with a deposition rate2(3±0.1) nm2sec-1.

The2structural, optical and electrical3properties have been studied3at different annealing3temperatures (Ta=450, 550 and 650) K.

The amount3or (concentration) of the elements3(Ag, In, Se) in the prepared alloy3was verified using an energy dispersive3x-ray spectrometer (EDS)3technology.

X-ray diffraction3analysis shows that AIS alloy prepared as (powder) and the thin films3are polycrystalline of tetragonal3structure with preferential orientation3(112).

The crystalline3size increases as a function3of annealing temperature.

The atomic force3microscope (AFM) technique was used to examine3the topography and estimate3the surface roughness, also the average grain3size of the films.

The results show3that the grain size increases3with annealing3temperature.

The optical4band gap of the films lies4in the range 1.6-1.9 eV.

The films4appear to be4n-type indicating that the electrons4as a dominant charge4carrier.

The electrical conductivity4increases with a corresponding4increase in annealing4temperature.

American Psychological Association (APA)

Khudayr, Iman Hamid& Ali, Bushra Hashim Husayn& Mustafa, Muhammad Hamid& Ibrahim, Aysar Jumah. 2018. Investigation of the structural, optical and electrical properties of aginse2 thin films. Ibn al-Haitham Journal for Pure and Applied Science،Vol. 31, no. 1, pp.37-49.
https://search.emarefa.net/detail/BIM-852902

Modern Language Association (MLA)

Khudayr, Iman Hamid…[et al.]. Investigation of the structural, optical and electrical properties of aginse2 thin films. Ibn al-Haitham Journal for Pure and Applied Science Vol. 31, no. 1 (2018), pp.37-49.
https://search.emarefa.net/detail/BIM-852902

American Medical Association (AMA)

Khudayr, Iman Hamid& Ali, Bushra Hashim Husayn& Mustafa, Muhammad Hamid& Ibrahim, Aysar Jumah. Investigation of the structural, optical and electrical properties of aginse2 thin films. Ibn al-Haitham Journal for Pure and Applied Science. 2018. Vol. 31, no. 1, pp.37-49.
https://search.emarefa.net/detail/BIM-852902

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references : p. 48-49

Record ID

BIM-852902