Characterization and In Vitro evaluation of a novel coated nanocomposite porous 3D scaffold for bone repair

Other Title(s)

التوصيف و التقييم في المختبر للسقالة الثلاثية الأبعاد المسامية المركبة النانوية الأصيلة و المغلفة لإصلاح العظام

Joint Authors

Bint Abd al-Razzaq, Intan Samihah
Yusuf, Luqman Muhammad
Mahmud, Zayd Khidr
Gimba, Fufa I.
Zakariyya, Muhammad Zuki Abu Bakr
Ibrahim, Sahar Muhammad
Mahmud, Saffanah Khidr

Source

Iraqi Journal of Veterinary Sciences

Issue

Vol. 33, Issue 1 (30 Jun. 2019), pp.157-173, 17 p.

Publisher

University of Mosul College of Veterinary Medicine

Publication Date

2019-06-30

Country of Publication

Iraq

No. of Pages

17

Main Subjects

Veterinary Medicine

Topics

Abstract EN

The aim of this study is to tissue engineer a 3D scaffold that can be used for load bearing segmental bone defects (SBDs) repair.

Three different scaffolds were fabricated using cockle shell-derived CaCO3 aragonite nanoparticles (CCAN), gelatin, dextran and dextrin with coated framework via Freeze-Drying Method (FDM) labeled as 5211, 5211GTA+Alginate, 5211PLA.

Scaffolds were assessed using Scanning Electron Microscopy (SEM).

The cytocompatibility of the organized scaffolds was assessed using cells multiplication and alkaline phosphatase (ALP) concentration via In Vitro cell culture using human Fetal OsteoBlast cells line (hFOB).

The results showed a substantial difference in ALP concentrations between the cultures of different scaffolds leachable medium during the study period.

The biological evaluation also showed that three scaffolds did enhanced the osteoblast proliferation rate and improved the osteoblast function as demonstrated by the significant increase in ALP concentration.

Engineering analyses showed that scaffolds possessed 3D interconnected homogenous porous structure with a porosity ranging 6%-49%, pore sizes ranging 8-345 µm, mechanical strength ranging 20-65 MPa, young’s modulus ranging 166-296 MPa and enzymatic degradation rate between 16%-38% within 2-10 weeks.

The in vitro evaluation revealed that the scaffold 5211, 5211GTA+Alginate and 5211PLA fulfill all the main requirements to be considered as an ideal bone replacement.

American Psychological Association (APA)

Ibrahim, Sahar Muhammad& Mahmud, Saffanah Khidr& Bint Abd al-Razzaq, Intan Samihah& Yusuf, Luqman Muhammad& Mahmud, Zayd Khidr& Gimba, Fufa I.…[et al.]. 2019. Characterization and In Vitro evaluation of a novel coated nanocomposite porous 3D scaffold for bone repair. Iraqi Journal of Veterinary Sciences،Vol. 33, no. 1, pp.157-173.
https://search.emarefa.net/detail/BIM-895541

Modern Language Association (MLA)

Ibrahim, Sahar Muhammad…[et al.]. Characterization and In Vitro evaluation of a novel coated nanocomposite porous 3D scaffold for bone repair. Iraqi Journal of Veterinary Sciences Vol. 33, no. 1 (2019), pp.157-173.
https://search.emarefa.net/detail/BIM-895541

American Medical Association (AMA)

Ibrahim, Sahar Muhammad& Mahmud, Saffanah Khidr& Bint Abd al-Razzaq, Intan Samihah& Yusuf, Luqman Muhammad& Mahmud, Zayd Khidr& Gimba, Fufa I.…[et al.]. Characterization and In Vitro evaluation of a novel coated nanocomposite porous 3D scaffold for bone repair. Iraqi Journal of Veterinary Sciences. 2019. Vol. 33, no. 1, pp.157-173.
https://search.emarefa.net/detail/BIM-895541

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references : p. 171-173

Record ID

BIM-895541