
Task-scheduling based on multi-objective particle swarm optimization in spatial crowdsourcing
Other Title(s)
جدولة المهام باستخدام خوارزمية استمثال عناصر السرب متعدد الأهداف في التعييد الجماعي المكاني
Joint Authors
al-Abbadi, Afra Abd Allah
Abu al-Khayr, Maysun F.
Source
Journal of King Abdulaziz University : Computing and Information Technology Sciences
Issue
Vol. 8, Issue 1 (30 Jun. 2019), pp.45-57, 13 p.
Publisher
King Abdul Aziz University Faculty of Computing and Information Technology
Publication Date
2019-06-30
Country of Publication
Saudi Arabia
No. of Pages
13
Main Subjects
Information Technology and Computer Science
Abstract EN
As a result of the rapid growth of internet and smartphone technology, a novel platform that attracts individuals and groups known as crowdsourcing emerged.
Crowdsourcing is an outsourcing platform that facilitates the accomplishment of costly tasks that consume long periods of time when traditional methods are used.
Spatial crowdsourcing (SC) is based on location; it introduces a new framework for the physical world that enables a crowd to complete spatial-temporal tasks.
The primary issue in SC is the assignment and scheduling of a set of available tasks to a set of proper workers based on different factors, such as the location of the task, the distance between task location and hired worker location, temporal conditions, and incentive rewards.
In the real-world, SC applications need to optimize multi-objectives simultaneously to exploit the utility of SC, and these objectives can be in conflict.
However, there are few studies that address this multi-objective optimization problem within a SC environment.
Thus, the authors propose a multi-objective task scheduling optimization problem in SC that aims to maximize the number of completed tasks, minimize total travel cost, and ensure worker workload balance.
To solve this problem, we developed a method that adapts the multi-objective particle swarm optimization (MOPSO) algorithm based on a proposed novel fitness function.
The experiments were conducted with both synthetic and real datasets; the experimental results show that this approach provides acceptable initial results.
As future work, we plan to improve the effectiveness of our proposed algorithm by integrating a simple ranking strategy based on task entropy and expected travel costs to enhance MOPSO performance.
American Psychological Association (APA)
al-Abbadi, Afra Abd Allah& Abu al-Khayr, Maysun F.. 2019. Task-scheduling based on multi-objective particle swarm optimization in spatial crowdsourcing. Journal of King Abdulaziz University : Computing and Information Technology Sciences،Vol. 8, no. 1, pp.45-57.
https://search.emarefa.net/detail/BIM-932928
Modern Language Association (MLA)
al-Abbadi, Afra Abd Allah& Abu al-Khayr, Maysun F.. Task-scheduling based on multi-objective particle swarm optimization in spatial crowdsourcing. Journal of King Abdulaziz University : Computing and Information Technology Sciences Vol. 8, no. 1 (2019), pp.45-57.
https://search.emarefa.net/detail/BIM-932928
American Medical Association (AMA)
al-Abbadi, Afra Abd Allah& Abu al-Khayr, Maysun F.. Task-scheduling based on multi-objective particle swarm optimization in spatial crowdsourcing. Journal of King Abdulaziz University : Computing and Information Technology Sciences. 2019. Vol. 8, no. 1, pp.45-57.
https://search.emarefa.net/detail/BIM-932928
Data Type
Journal Articles
Language
English
Notes
Includes bibliographical references : p. 55-56
Record ID
BIM-932928