Fission Product Transport and Source Terms in HTRs: Experience from AVR Pebble Bed Reactor

Author

Moormann, Rainer

Source

Science and Technology of Nuclear Installations

Issue

Vol. 2008, Issue 2008 (31 Dec. 2008), pp.1-14, 14 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2008-07-14

Country of Publication

Egypt

No. of Pages

14

Abstract EN

Fission products deposited in the coolant circuit outside of the active core play a dominant role in source term estimations for advanced small pebble bed HTRs, particularly in design basis accidents (DBA).

The deposited fission products may be released in depressurization accidents because present pebble bed HTR concepts abstain from a gas tight containment.

Contamination of the circuit also hinders maintenance work.

Experiments, performed from 1972 to 88 on the AVR, an experimental pebble bed HTR, allow for a deeper insight into fission product transport behavior.

The activity deposition per coolant pass was lower than expected and was influenced by fission product chemistry and by presence of carbonaceous dust.

The latter lead also to inconsistencies between Cs plate out experiments in laboratory and in AVR.

The deposition behavior of Ag was in line with present models.

Dust as activity carrier is of safety relevance because of its mobility and of its sorption capability for fission products.

All metal surfaces in pebble bed reactors were covered by a carbonaceous dust layer.

Dust in AVR was produced by abrasion in amounts of about 5 kg/y.

Additional dust sources in AVR were ours oil ingress and peeling of fuel element surfaces due to an air ingress.

Dust has a size of about 1 μm, consists mainly of graphite, is partly remobilized by flow perturbations, and deposits with time constants of 1 to 2 hours.

In future reactors, an efficient filtering via a gas tight containment is required because accidents with fast depressurizations induce dust mobilization.

Enhanced core temperatures in normal operation as in AVR and broken fuel pebbles have to be considered, as inflammable dust concentrations in the gas phase.

American Psychological Association (APA)

Moormann, Rainer. 2008. Fission Product Transport and Source Terms in HTRs: Experience from AVR Pebble Bed Reactor. Science and Technology of Nuclear Installations،Vol. 2008, no. 2008, pp.1-14.
https://search.emarefa.net/detail/BIM-988278

Modern Language Association (MLA)

Moormann, Rainer. Fission Product Transport and Source Terms in HTRs: Experience from AVR Pebble Bed Reactor. Science and Technology of Nuclear Installations No. 2008 (2008), pp.1-14.
https://search.emarefa.net/detail/BIM-988278

American Medical Association (AMA)

Moormann, Rainer. Fission Product Transport and Source Terms in HTRs: Experience from AVR Pebble Bed Reactor. Science and Technology of Nuclear Installations. 2008. Vol. 2008, no. 2008, pp.1-14.
https://search.emarefa.net/detail/BIM-988278

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-988278