A Model of Implant-Associated Infection in the Tibial Metaphysis of Rats

المؤلفون المشاركون

Haenle, Maximilian
Arndt, Kathleen
Vetter, Anika
Podbielski, Andreas
Lindner, Tobias
Bader, Rainer
Zietz, Carmen
Mittelmeier, Wolfram

المصدر

The Scientific World Journal

العدد

المجلد 2013، العدد 2013 (31 ديسمبر/كانون الأول 2013)، ص ص. 1-8، 8ص.

الناشر

Hindawi Publishing Corporation

تاريخ النشر

2013-12-08

دولة النشر

مصر

عدد الصفحات

8

التخصصات الرئيسية

الطب البشري
تكنولوجيا المعلومات وعلم الحاسوب

الملخص EN

Objective.

Implant-associated infections remain serious complications in orthopaedic and trauma surgery.

A main scientific focus has thus been drawn to the development of anti-infective implant coatings.

Animal models of implant-associated infections are considered helpful in the in vivo testing of new anti-infective implant coatings.

The aim of the present study was to evaluate a novel animal model for generation of implant-associated infections in the tibial metaphysis of rats.

Materials and Methods.

A custom-made conical implant made of Ti6Al4V was inserted bilaterally at the medial proximal tibia of 26 female Sprague-Dawley rats.

Staphylococcus aureus in amounts spanning four orders of magnitude and each suspended in 15 μl phosphate buffered saline (PBS) was inoculated into the inner cavity of the implant after the implantation into the defined position.

Controls were treated accordingly with PBS alone.

Animals were then followed for six weeks until sacrifice.

Implant-associated infection was evaluated by microbiological investigation using swabs and determination of viable bacteria in the bone around the implant and the biofilm on the implants after sonification.

Results.

Irrespective of the initial inoculum, all animals in the various groups harbored viable bacteria in the intraoperative swabs as well as the sonication fluid of the implant and the bone samples.

No correlation could be established between initially inoculated CFU and population sizes on implant surfaces at sacrifice.

However, a significantly higher viable count was observed from peri-implant bone samples for animals inoculated with 106 CFU.

Macroscopic signs of animal infection (pus and abscess formation) were only observed for implants inoculated with at least 105 CFU S.

aureus.

Discussion/Conclusion.

The results demonstrate the feasibility of this novel animal model to induce an implant-associated infection in the metaphysis of rats, even with comparatively low bacterial inocula.

The specific design of the implant allows an application of bacteria in reproducible numbers at well-defined contact sites to the animal bone.

نمط استشهاد جمعية علماء النفس الأمريكية (APA)

Haenle, Maximilian& Zietz, Carmen& Lindner, Tobias& Arndt, Kathleen& Vetter, Anika& Mittelmeier, Wolfram…[et al.]. 2013. A Model of Implant-Associated Infection in the Tibial Metaphysis of Rats. The Scientific World Journal،Vol. 2013, no. 2013, pp.1-8.
https://search.emarefa.net/detail/BIM-1032970

نمط استشهاد الجمعية الأمريكية للغات الحديثة (MLA)

Haenle, Maximilian…[et al.]. A Model of Implant-Associated Infection in the Tibial Metaphysis of Rats. The Scientific World Journal No. 2013 (2013), pp.1-8.
https://search.emarefa.net/detail/BIM-1032970

نمط استشهاد الجمعية الطبية الأمريكية (AMA)

Haenle, Maximilian& Zietz, Carmen& Lindner, Tobias& Arndt, Kathleen& Vetter, Anika& Mittelmeier, Wolfram…[et al.]. A Model of Implant-Associated Infection in the Tibial Metaphysis of Rats. The Scientific World Journal. 2013. Vol. 2013, no. 2013, pp.1-8.
https://search.emarefa.net/detail/BIM-1032970

نوع البيانات

مقالات

لغة النص

الإنجليزية

الملاحظات

Includes bibliographical references

رقم السجل

BIM-1032970