A Model of Implant-Associated Infection in the Tibial Metaphysis of Rats

Joint Authors

Haenle, Maximilian
Arndt, Kathleen
Vetter, Anika
Podbielski, Andreas
Lindner, Tobias
Bader, Rainer
Zietz, Carmen
Mittelmeier, Wolfram

Source

The Scientific World Journal

Issue

Vol. 2013, Issue 2013 (31 Dec. 2013), pp.1-8, 8 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2013-12-08

Country of Publication

Egypt

No. of Pages

8

Main Subjects

Medicine
Information Technology and Computer Science

Abstract EN

Objective.

Implant-associated infections remain serious complications in orthopaedic and trauma surgery.

A main scientific focus has thus been drawn to the development of anti-infective implant coatings.

Animal models of implant-associated infections are considered helpful in the in vivo testing of new anti-infective implant coatings.

The aim of the present study was to evaluate a novel animal model for generation of implant-associated infections in the tibial metaphysis of rats.

Materials and Methods.

A custom-made conical implant made of Ti6Al4V was inserted bilaterally at the medial proximal tibia of 26 female Sprague-Dawley rats.

Staphylococcus aureus in amounts spanning four orders of magnitude and each suspended in 15 μl phosphate buffered saline (PBS) was inoculated into the inner cavity of the implant after the implantation into the defined position.

Controls were treated accordingly with PBS alone.

Animals were then followed for six weeks until sacrifice.

Implant-associated infection was evaluated by microbiological investigation using swabs and determination of viable bacteria in the bone around the implant and the biofilm on the implants after sonification.

Results.

Irrespective of the initial inoculum, all animals in the various groups harbored viable bacteria in the intraoperative swabs as well as the sonication fluid of the implant and the bone samples.

No correlation could be established between initially inoculated CFU and population sizes on implant surfaces at sacrifice.

However, a significantly higher viable count was observed from peri-implant bone samples for animals inoculated with 106 CFU.

Macroscopic signs of animal infection (pus and abscess formation) were only observed for implants inoculated with at least 105 CFU S.

aureus.

Discussion/Conclusion.

The results demonstrate the feasibility of this novel animal model to induce an implant-associated infection in the metaphysis of rats, even with comparatively low bacterial inocula.

The specific design of the implant allows an application of bacteria in reproducible numbers at well-defined contact sites to the animal bone.

American Psychological Association (APA)

Haenle, Maximilian& Zietz, Carmen& Lindner, Tobias& Arndt, Kathleen& Vetter, Anika& Mittelmeier, Wolfram…[et al.]. 2013. A Model of Implant-Associated Infection in the Tibial Metaphysis of Rats. The Scientific World Journal،Vol. 2013, no. 2013, pp.1-8.
https://search.emarefa.net/detail/BIM-1032970

Modern Language Association (MLA)

Haenle, Maximilian…[et al.]. A Model of Implant-Associated Infection in the Tibial Metaphysis of Rats. The Scientific World Journal No. 2013 (2013), pp.1-8.
https://search.emarefa.net/detail/BIM-1032970

American Medical Association (AMA)

Haenle, Maximilian& Zietz, Carmen& Lindner, Tobias& Arndt, Kathleen& Vetter, Anika& Mittelmeier, Wolfram…[et al.]. A Model of Implant-Associated Infection in the Tibial Metaphysis of Rats. The Scientific World Journal. 2013. Vol. 2013, no. 2013, pp.1-8.
https://search.emarefa.net/detail/BIM-1032970

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1032970