Multiple Approaches to Quantifying the Effective Porosity of Lacustrine Shale Oil Reservoirs in Bohai Bay Basin, East China

المؤلفون المشاركون

Meng, Mianmo
Yin, Na
Ma, Binyu
Hu, Qinhong
Yang, Shengyu
Qiao, Hongguo
Zhang, Tao

المصدر

Geofluids

العدد

المجلد 2020، العدد 2020 (31 ديسمبر/كانون الأول 2020)، ص ص. 1-13، 13ص.

الناشر

Hindawi Publishing Corporation

تاريخ النشر

2020-08-25

دولة النشر

مصر

عدد الصفحات

13

التخصصات الرئيسية

الفيزياء

الملخص EN

An effective porosity is defined as the ratio of volume of interconnected pore space to total volume of a porous sample.

It controls the magnitude of fluid flow and is a key parameter in the assessment of recoverable resources.

However, its accurate measurement in tight formations is challenging, due to their complex pore structure and lithofacies heterogeneity.

In this study, porosities of sixteen lacustrine shale samples from the second Member of the Kongdian Formation (Ek2) in the Cangdong Sag, Bohai Bay Basin were measured and compared using multiple methods and sample sizes to compare and contrast the effective porosity results.

The methods included helium pycnometry (HP; cubes of 1 cm3 and grains at 500-841 μm), water immersion porosimetry (WIP; cubes), mercury intrusion porosimetry (MIP; cubes), and nuclear magnetic resonance (NMR; cubes).

Finally, samples were completely sealed using paraffin for bulk density measurements to evaluate the extent of potential clay swelling in shale samples involving probing fluids.

Results from the HP, WIP, and MIP methods for skeletal density, bulk density, and effective porosity with cubic samples were compared.

While very similar skeletal densities were found for all three methods, a lower bulk density, and therefore lower porosity, from the MIP approach can be attributed to the experimental conditions (e.g., vacuum efficiency, applied pressure, wettability of water/helium vs.

mercury) and the probable presence of pores with diameters larger than 50 μm not measurable by MIP.

Furthermore, the HP porosity of granular samples with 500-841 μm grain sizes can be regarded as approaching the total porosity.

The complicated relationship between WIP and NMR porosities may result from the heat-induced volatilization of moisture in pores during NMR tests, and countercurrent imbibition of water replacing the residual hydrocarbons during the saturation process for sample preparation in both tests.

The swelling behavior of the lacustrine Ek2 shale with water is not significant because of the low content of expansive clay minerals.

In summary, the WIP and HP methods are recommended for effective porosity measurement, whereas the NMR and MIP methods are invaluable for the measurement of pore-size distribution, with additional information on the effective porosity.

نمط استشهاد جمعية علماء النفس الأمريكية (APA)

Ma, Binyu& Hu, Qinhong& Yang, Shengyu& Yin, Na& Qiao, Hongguo& Zhang, Tao…[et al.]. 2020. Multiple Approaches to Quantifying the Effective Porosity of Lacustrine Shale Oil Reservoirs in Bohai Bay Basin, East China. Geofluids،Vol. 2020, no. 2020, pp.1-13.
https://search.emarefa.net/detail/BIM-1165967

نمط استشهاد الجمعية الأمريكية للغات الحديثة (MLA)

Ma, Binyu…[et al.]. Multiple Approaches to Quantifying the Effective Porosity of Lacustrine Shale Oil Reservoirs in Bohai Bay Basin, East China. Geofluids No. 2020 (2020), pp.1-13.
https://search.emarefa.net/detail/BIM-1165967

نمط استشهاد الجمعية الطبية الأمريكية (AMA)

Ma, Binyu& Hu, Qinhong& Yang, Shengyu& Yin, Na& Qiao, Hongguo& Zhang, Tao…[et al.]. Multiple Approaches to Quantifying the Effective Porosity of Lacustrine Shale Oil Reservoirs in Bohai Bay Basin, East China. Geofluids. 2020. Vol. 2020, no. 2020, pp.1-13.
https://search.emarefa.net/detail/BIM-1165967

نوع البيانات

مقالات

لغة النص

الإنجليزية

الملاحظات

Includes bibliographical references

رقم السجل

BIM-1165967