Multiple Approaches to Quantifying the Effective Porosity of Lacustrine Shale Oil Reservoirs in Bohai Bay Basin, East China

Joint Authors

Meng, Mianmo
Yin, Na
Ma, Binyu
Hu, Qinhong
Yang, Shengyu
Qiao, Hongguo
Zhang, Tao

Source

Geofluids

Issue

Vol. 2020, Issue 2020 (31 Dec. 2020), pp.1-13, 13 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2020-08-25

Country of Publication

Egypt

No. of Pages

13

Main Subjects

Physics

Abstract EN

An effective porosity is defined as the ratio of volume of interconnected pore space to total volume of a porous sample.

It controls the magnitude of fluid flow and is a key parameter in the assessment of recoverable resources.

However, its accurate measurement in tight formations is challenging, due to their complex pore structure and lithofacies heterogeneity.

In this study, porosities of sixteen lacustrine shale samples from the second Member of the Kongdian Formation (Ek2) in the Cangdong Sag, Bohai Bay Basin were measured and compared using multiple methods and sample sizes to compare and contrast the effective porosity results.

The methods included helium pycnometry (HP; cubes of 1 cm3 and grains at 500-841 μm), water immersion porosimetry (WIP; cubes), mercury intrusion porosimetry (MIP; cubes), and nuclear magnetic resonance (NMR; cubes).

Finally, samples were completely sealed using paraffin for bulk density measurements to evaluate the extent of potential clay swelling in shale samples involving probing fluids.

Results from the HP, WIP, and MIP methods for skeletal density, bulk density, and effective porosity with cubic samples were compared.

While very similar skeletal densities were found for all three methods, a lower bulk density, and therefore lower porosity, from the MIP approach can be attributed to the experimental conditions (e.g., vacuum efficiency, applied pressure, wettability of water/helium vs.

mercury) and the probable presence of pores with diameters larger than 50 μm not measurable by MIP.

Furthermore, the HP porosity of granular samples with 500-841 μm grain sizes can be regarded as approaching the total porosity.

The complicated relationship between WIP and NMR porosities may result from the heat-induced volatilization of moisture in pores during NMR tests, and countercurrent imbibition of water replacing the residual hydrocarbons during the saturation process for sample preparation in both tests.

The swelling behavior of the lacustrine Ek2 shale with water is not significant because of the low content of expansive clay minerals.

In summary, the WIP and HP methods are recommended for effective porosity measurement, whereas the NMR and MIP methods are invaluable for the measurement of pore-size distribution, with additional information on the effective porosity.

American Psychological Association (APA)

Ma, Binyu& Hu, Qinhong& Yang, Shengyu& Yin, Na& Qiao, Hongguo& Zhang, Tao…[et al.]. 2020. Multiple Approaches to Quantifying the Effective Porosity of Lacustrine Shale Oil Reservoirs in Bohai Bay Basin, East China. Geofluids،Vol. 2020, no. 2020, pp.1-13.
https://search.emarefa.net/detail/BIM-1165967

Modern Language Association (MLA)

Ma, Binyu…[et al.]. Multiple Approaches to Quantifying the Effective Porosity of Lacustrine Shale Oil Reservoirs in Bohai Bay Basin, East China. Geofluids No. 2020 (2020), pp.1-13.
https://search.emarefa.net/detail/BIM-1165967

American Medical Association (AMA)

Ma, Binyu& Hu, Qinhong& Yang, Shengyu& Yin, Na& Qiao, Hongguo& Zhang, Tao…[et al.]. Multiple Approaches to Quantifying the Effective Porosity of Lacustrine Shale Oil Reservoirs in Bohai Bay Basin, East China. Geofluids. 2020. Vol. 2020, no. 2020, pp.1-13.
https://search.emarefa.net/detail/BIM-1165967

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1165967