Tanshinone IIA Protects against Acute Pancreatitis in Mice by Inhibiting Oxidative Stress via the Nrf2ROS Pathway

المؤلفون المشاركون

Lu, Guotao
Li, Weiqin
Xia, Qing
Gong, Weijuan
Xiao, Weiming
Chen, Weiwei
Huang, Wei
Yuan, Chenchen
Lu, Yingying
Zhu, Qingtian
Ma, Xiaojie

المصدر

Oxidative Medicine and Cellular Longevity

العدد

المجلد 2020، العدد 2020 (31 ديسمبر/كانون الأول 2020)، ص ص. 1-12، 12ص.

الناشر

Hindawi Publishing Corporation

تاريخ النشر

2020-04-08

دولة النشر

مصر

عدد الصفحات

12

التخصصات الرئيسية

الأحياء

الملخص EN

Background.

Danshen (Salvia miltiorrhiza Bunge) and its main active component Tanshinone IIA (TSA) are clinically used in China.

However, the effects of TSA on acute pancreatitis (AP) and its potential mechanism have not been investigated.

In this study, our objective was to investigate the protective effects of TSA against AP via three classic mouse models.

Methods.

Mouse models of AP were established by caerulein, sodium taurocholate, and L-arginine, separately.

Pancreatic and pulmonary histopathological characteristics and serum amylase and lipase levels were evaluated, and changes in oxidative stress injury and the ultrastructure of acinar cells were observed.

The reactive oxygen species (ROS) inhibitor N-Acetylcysteine (NAC) and nuclear factor erythroid 2-related factor 2 (Nrf2) knockout mice were applied to clarify the protective mechanism of the drug.

Results.

In the caerulein-induced AP model, TSA administration reduced serum amylase and lipase levels and ameliorated the histopathological manifestations of AP in pancreatic tissue.

Additionally, TSA appreciably decreased ROS release, protected the structures of mitochondria and the endoplasmic reticulum, and increased the protein expression of Nrf2 and heme oxygenase 1 of pancreatic tissue.

In addition, the protective effects of TSA against AP were counteracted by blocking the oxidative stress (NAC administration and Nrf2 knockout in mice).

Furthermore, we found that TSA protects pancreatic tissue from damage and pancreatitis-associated lung injury in two additional mouse models induced by sodium taurocholate and by L-arginine.

Conclusion.

Our data confirmed the protective effects of TSA against AP in mice by inhibiting oxidative stress via the Nrf2/ROS pathway.

نمط استشهاد جمعية علماء النفس الأمريكية (APA)

Chen, Weiwei& Yuan, Chenchen& Lu, Yingying& Zhu, Qingtian& Ma, Xiaojie& Xiao, Weiming…[et al.]. 2020. Tanshinone IIA Protects against Acute Pancreatitis in Mice by Inhibiting Oxidative Stress via the Nrf2ROS Pathway. Oxidative Medicine and Cellular Longevity،Vol. 2020, no. 2020, pp.1-12.
https://search.emarefa.net/detail/BIM-1204830

نمط استشهاد الجمعية الأمريكية للغات الحديثة (MLA)

Chen, Weiwei…[et al.]. Tanshinone IIA Protects against Acute Pancreatitis in Mice by Inhibiting Oxidative Stress via the Nrf2ROS Pathway. Oxidative Medicine and Cellular Longevity No. 2020 (2020), pp.1-12.
https://search.emarefa.net/detail/BIM-1204830

نمط استشهاد الجمعية الطبية الأمريكية (AMA)

Chen, Weiwei& Yuan, Chenchen& Lu, Yingying& Zhu, Qingtian& Ma, Xiaojie& Xiao, Weiming…[et al.]. Tanshinone IIA Protects against Acute Pancreatitis in Mice by Inhibiting Oxidative Stress via the Nrf2ROS Pathway. Oxidative Medicine and Cellular Longevity. 2020. Vol. 2020, no. 2020, pp.1-12.
https://search.emarefa.net/detail/BIM-1204830

نوع البيانات

مقالات

لغة النص

الإنجليزية

الملاحظات

Includes bibliographical references

رقم السجل

BIM-1204830