Utilizing Fast Spin Echo MRI to Reduce Image Artifacts and Improve ImplantTissue Interface Detection in Refractory Parkinson’s Patients with Deep Brain Stimulators

Joint Authors

Sarkar, Subhendra N.
Sarkar, Pooja R.
Papavassiliou, Efstathios
Rojas, Rafael R.

Source

Parkinson’s Disease

Issue

Vol. 2014, Issue 2014 (31 Dec. 2014), pp.1-6, 6 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2014-02-25

Country of Publication

Egypt

No. of Pages

6

Main Subjects

Diseases
Medicine

Abstract EN

Introduction.

In medically refractory Parkinson’s disease (PD) deep-brain stimulation (DBS) is an effective therapeutic tool.

Postimplantation MRI is important in assessing tissue damage and DBS lead placement accuracy.

We wanted to identify which MRI sequence can detect DBS leads with smallest artifactual signal void, allowing better tissue/electrode edge conspicuity.

Methods.

Using an IRB approved protocol 8 advanced PD patients were imaged within MR conditional safety guidelines at low RF power (SAR ≤ 0.1 W/kg) in coronal plane at 1.5T by various sequences.

The image slices were subjectively evaluated for diagnostic quality and the lead contact diameters were compared to identify a sequence least affected by metallic leads.

Results and Discussion.

Spin echo and fast spin echo based low SAR sequences provided acceptable image quality with comparable image blooming (enlargement) of stimulator leads.

The mean lead diameters were 2.2 ± 0.1 mm for 2D, 2.1 ± 0.1 mm for 3D, and 4.0 ± 0.2 mm for 3D MPRAGE sequence.

Conclusion.

Low RF power spin echo and fast spin echo based 2D and 3D FSE sequences provide acceptable image quality adjacent to DBS leads.

The smallest artifactual blooming of stimulator leads is present on 3D FSE while the largest signal void appears in the 3D MPRAGE sequence.

American Psychological Association (APA)

Sarkar, Subhendra N.& Sarkar, Pooja R.& Papavassiliou, Efstathios& Rojas, Rafael R.. 2014. Utilizing Fast Spin Echo MRI to Reduce Image Artifacts and Improve ImplantTissue Interface Detection in Refractory Parkinson’s Patients with Deep Brain Stimulators. Parkinson’s Disease،Vol. 2014, no. 2014, pp.1-6.
https://search.emarefa.net/detail/BIM-1047213

Modern Language Association (MLA)

Sarkar, Subhendra N.…[et al.]. Utilizing Fast Spin Echo MRI to Reduce Image Artifacts and Improve ImplantTissue Interface Detection in Refractory Parkinson’s Patients with Deep Brain Stimulators. Parkinson’s Disease No. 2014 (2014), pp.1-6.
https://search.emarefa.net/detail/BIM-1047213

American Medical Association (AMA)

Sarkar, Subhendra N.& Sarkar, Pooja R.& Papavassiliou, Efstathios& Rojas, Rafael R.. Utilizing Fast Spin Echo MRI to Reduce Image Artifacts and Improve ImplantTissue Interface Detection in Refractory Parkinson’s Patients with Deep Brain Stimulators. Parkinson’s Disease. 2014. Vol. 2014, no. 2014, pp.1-6.
https://search.emarefa.net/detail/BIM-1047213

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1047213