Human Bone Marrow-Derived Mesenchymal Stromal Cells Differentially Inhibit Cytokine Production by Peripheral Blood Monocytes Subpopulations and Myeloid Dendritic Cells

Joint Authors

Pedreiro, S.
Laranjeira, Paula
Gomes, Joana
Pedrosa, Monia
Martinho, Antonio
Antunes, Brigida
Ribeiro, Tania
Santos, Francisco
Domingues, Rosario
Abecasis, Manuel
Trindade, Helder
Paiva, Artur

Source

Stem Cells International

Issue

Vol. 2015, Issue 2015 (31 Dec. 2015), pp.1-15, 15 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2015-04-28

Country of Publication

Egypt

No. of Pages

15

Abstract EN

The immunosuppressive properties of mesenchymal stromal/stem cells (MSC) rendered them an attractive therapeutic approach for immune disorders and an increasing body of evidence demonstrated their clinical value.

However, the influence of MSC on the function of specific immune cell populations, namely, monocyte subpopulations, is not well elucidated.

Here, we investigated the influence of human bone marrow MSC on the cytokine and chemokine expression by peripheral blood classical, intermediate and nonclassical monocytes, and myeloid dendritic cells (mDC), stimulated with lipopolysaccharide plus interferon (IFN)γ.

We found that MSC effectively inhibit tumor necrosis factor- (TNF-) α and macrophage inflammatory protein- (MIP-) 1β protein expression in monocytes and mDC, without suppressing CCR7 and CD83 protein expression.

Interestingly, mDC exhibited the highest degree of inhibition, for both TNF-α and MIP-1β, whereas the reduction of TNF-α expression was less marked for nonclassical monocytes.

Similarly, MSC decreased mRNA levels of interleukin- (IL-) 1β and IL-6 in classical monocytes, CCL3, CCL5, CXCL9, and CXCL10 in classical and nonclassical monocytes, and IL-1β and CXCL10 in mDC.

MSC do not impair the expression of maturation markers in monocytes and mDC under our experimental conditions; nevertheless, they hamper the proinflammatory function of monocytes and mDC, which may impede the development of inflammatory immune responses.

American Psychological Association (APA)

Laranjeira, Paula& Gomes, Joana& Pedreiro, S.& Pedrosa, Monia& Martinho, Antonio& Antunes, Brigida…[et al.]. 2015. Human Bone Marrow-Derived Mesenchymal Stromal Cells Differentially Inhibit Cytokine Production by Peripheral Blood Monocytes Subpopulations and Myeloid Dendritic Cells. Stem Cells International،Vol. 2015, no. 2015, pp.1-15.
https://search.emarefa.net/detail/BIM-1076354

Modern Language Association (MLA)

Laranjeira, Paula…[et al.]. Human Bone Marrow-Derived Mesenchymal Stromal Cells Differentially Inhibit Cytokine Production by Peripheral Blood Monocytes Subpopulations and Myeloid Dendritic Cells. Stem Cells International No. 2015 (2015), pp.1-15.
https://search.emarefa.net/detail/BIM-1076354

American Medical Association (AMA)

Laranjeira, Paula& Gomes, Joana& Pedreiro, S.& Pedrosa, Monia& Martinho, Antonio& Antunes, Brigida…[et al.]. Human Bone Marrow-Derived Mesenchymal Stromal Cells Differentially Inhibit Cytokine Production by Peripheral Blood Monocytes Subpopulations and Myeloid Dendritic Cells. Stem Cells International. 2015. Vol. 2015, no. 2015, pp.1-15.
https://search.emarefa.net/detail/BIM-1076354

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1076354