Differential Mitochondrial Adaptation in Primary Vascular Smooth Muscle Cells from a Diabetic Rat Model

Joint Authors

Keller, Amy C.
Knaub, Leslie A.
McClatchey, P. Mason
Connon, Chelsea A.
Bouchard, Ron
Miller, Matthew W.
Geary, Kate E.
Walker, Lori A.
Klemm, Dwight J.
Reusch, Jane E. B.

Source

Oxidative Medicine and Cellular Longevity

Issue

Vol. 2016, Issue 2016 (31 Dec. 2016), pp.1-15, 15 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2016-01-11

Country of Publication

Egypt

No. of Pages

15

Main Subjects

Biology

Abstract EN

Diabetes affects more than 330 million people worldwide and causes elevated cardiovascular disease risk.

Mitochondria are critical for vascular function, generate cellular reactive oxygen species (ROS), and are perturbed by diabetes, representing a novel target for therapeutics.

We hypothesized that adaptive mitochondrial plasticity in response to nutrient stress would be impaired in diabetes cellular physiology via a nitric oxide synthase- (NOS-) mediated decrease in mitochondrial function.

Primary smooth muscle cells (SMCs) from aorta of the nonobese, insulin resistant rat diabetes model Goto-Kakizaki (GK) and the Wistar control rat were exposed to high glucose (25 mM).

At baseline, significantly greater nitric oxide evolution, ROS production, and respiratory control ratio (RCR) were observed in GK SMCs.

Upon exposure to high glucose, expression of phosphorylated eNOS, uncoupled respiration, and expression of mitochondrial complexes I, II, III, and V were significantly decreased in GK SMCs (p<0.05).

Mitochondrial superoxide increased with high glucose in Wistar SMCs (p<0.05) with no change in the GK beyond elevated baseline concentrations.

Baseline comparisons show persistent metabolic perturbations in a diabetes phenotype.

Overall, nutrient stress in GK SMCs caused a persistent decline in eNOS and mitochondrial function and disrupted mitochondrial plasticity, illustrating eNOS and mitochondria as potential therapeutic targets.

American Psychological Association (APA)

Keller, Amy C.& Knaub, Leslie A.& McClatchey, P. Mason& Connon, Chelsea A.& Bouchard, Ron& Miller, Matthew W.…[et al.]. 2016. Differential Mitochondrial Adaptation in Primary Vascular Smooth Muscle Cells from a Diabetic Rat Model. Oxidative Medicine and Cellular Longevity،Vol. 2016, no. 2016, pp.1-15.
https://search.emarefa.net/detail/BIM-1114384

Modern Language Association (MLA)

Keller, Amy C.…[et al.]. Differential Mitochondrial Adaptation in Primary Vascular Smooth Muscle Cells from a Diabetic Rat Model. Oxidative Medicine and Cellular Longevity No. 2016 (2016), pp.1-15.
https://search.emarefa.net/detail/BIM-1114384

American Medical Association (AMA)

Keller, Amy C.& Knaub, Leslie A.& McClatchey, P. Mason& Connon, Chelsea A.& Bouchard, Ron& Miller, Matthew W.…[et al.]. Differential Mitochondrial Adaptation in Primary Vascular Smooth Muscle Cells from a Diabetic Rat Model. Oxidative Medicine and Cellular Longevity. 2016. Vol. 2016, no. 2016, pp.1-15.
https://search.emarefa.net/detail/BIM-1114384

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1114384