Network Pharmacology-Based Study on the Mechanism of Pinellia ternata in Asthma Treatment

Joint Authors

Xia, Qing
Zhang, Shanshan
Lyu, Yanmin
Chen, Xiangjing
Yao, Chengfang

Source

Evidence-Based Complementary and Alternative Medicine

Issue

Vol. 2020, Issue 2020 (31 Dec. 2020), pp.1-12, 12 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2020-10-20

Country of Publication

Egypt

No. of Pages

12

Main Subjects

Medicine

Abstract EN

Background.

Pinellia ternata (PT), a medicinal plant, has had an extensive application in the treatment of asthma in China, whereas its underlying pharmacological mechanisms remain unclear.

Methods.

Firstly, a network pharmacology method was adopted to collect activated components of PT from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP).

Targets of PT were assessed by exploiting the PharmMapper website; asthma-related targets were collected from the OMIM website, and target-target interaction networks were built.

Secondly, critical nodes exhibiting high possibility were identified as the hub nodes in the network, which were employed to conduct Gene Ontology (GO) comment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway enrichment analysis.

Finally, the tissue expression profiles of key candidate genes were identified by the Gene Expression Omnibus (GEO) database, and the therapeutic effect of PT was verified by an animal experiment.

Results.

57 achievable targets of PT on asthma were confirmed as hub nodes through using the network pharmacology method.

As revealed from the KEGG enrichment analysis, the signaling pathways were notably enriched in pathways of the T-cell receptor signaling pathway, JAK-STAT signaling pathway, and cytokine-cytokine receptor interaction.

The expression profiles of candidate genes including Mmp2, Nr3c1, il-10, il-4, il-13, il-17a, il-2, tlr4, tlr9, ccl2, csf2, and vefgα were identified.

Moreover, according to transcriptome RNA sequencing data from lung tissues of allergic mice compared to normal mice, the mRNA level of Mmp2 and il-4 was upregulated (P<0.001).

In animal experiments, PT could alleviate the allergic response of mice by inhibiting the activation of T-helper type 2 (TH2) cells and the expression of Mmp2 and il-4.

Conclusions.

Our study provides candidate genes that may be either used for future studies related to diagnosis/prognosis or as targets for asthma management.

Besides, animal experiments showed that PT could treat asthma by regulating the expression of Mmp2 and il-4.

American Psychological Association (APA)

Lyu, Yanmin& Chen, Xiangjing& Xia, Qing& Zhang, Shanshan& Yao, Chengfang. 2020. Network Pharmacology-Based Study on the Mechanism of Pinellia ternata in Asthma Treatment. Evidence-Based Complementary and Alternative Medicine،Vol. 2020, no. 2020, pp.1-12.
https://search.emarefa.net/detail/BIM-1158684

Modern Language Association (MLA)

Lyu, Yanmin…[et al.]. Network Pharmacology-Based Study on the Mechanism of Pinellia ternata in Asthma Treatment. Evidence-Based Complementary and Alternative Medicine No. 2020 (2020), pp.1-12.
https://search.emarefa.net/detail/BIM-1158684

American Medical Association (AMA)

Lyu, Yanmin& Chen, Xiangjing& Xia, Qing& Zhang, Shanshan& Yao, Chengfang. Network Pharmacology-Based Study on the Mechanism of Pinellia ternata in Asthma Treatment. Evidence-Based Complementary and Alternative Medicine. 2020. Vol. 2020, no. 2020, pp.1-12.
https://search.emarefa.net/detail/BIM-1158684

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1158684