Antimetabolic Syndrome Effect of Phytosome Containing the Combined Extracts of Mulberry and Ginger in an Animal Model of Metabolic Syndrome

Joint Authors

Wattanathorn, Jintanaporn
Palachai, Nut
Muchimapura, Supaporn
Thukham-mee, Wipawee

Source

Oxidative Medicine and Cellular Longevity

Issue

Vol. 2019, Issue 2019 (31 Dec. 2019), pp.1-19, 19 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2019-11-11

Country of Publication

Egypt

No. of Pages

19

Main Subjects

Biology

Abstract EN

Due to the antimetabolic syndrome effect of mulberry and ginger together with the advantages of the synergistic effect and phytosome encapsulation technique, we hypothesized that phytosome containing the combined extracts of mulberry and ginger (PMG) should be able to manage MetS.

PMG was developed and assessed the phenolic content and biological activities associated with the pathophysiology of MetS.

The antimetabolic syndrome effect and the possible underlying mechanisms in the animal model of MetS were also assessed.

Male Wistar rats induced MetS by subjecting to a 16-week high-carbohydrate high-fat diet.

MetS rats were orally given PMG at doses of 50, 100, and 200 mg/kg for 21 days.

They were determined metabolic parameter changes in serum, histomorphology changes of adipose tissue, the inflammatory cytokines such as IL-6 and TNF-α, oxidative stress status, PPAR-γ, and HDAC3 in adipose tissue.

Our in vitro data showed that PMG increased phenolic contents and biological activities.

PMG significantly improved MetS parameters including body weight gain, lipid profiles, plasma glucose, HOMA-IR, and ACE.

In addition, the density and size of adipocyte, adiposity index, and weights of adipose tissues were also improved.

Moreover, the decrease in TNF-α and IL-6, oxidative stress status, and HDAC3 expression together with the increase in PPAR-γ expression in adipose tissue was also observed.

These data suggest that PMG exhibit antimetabolic syndrome and the possible underlying mechanism may be associated partly with the modulation effect on HDAC3, PPAR-γ, and adipose tissue.

In addition, PMG also improves oxidative stress and inflammation in MetS.

Therefore, PMG can be served as the potential supplement to manage MetS.

However, a clinical trial study is essential to confirm this health benefit.

American Psychological Association (APA)

Palachai, Nut& Wattanathorn, Jintanaporn& Muchimapura, Supaporn& Thukham-mee, Wipawee. 2019. Antimetabolic Syndrome Effect of Phytosome Containing the Combined Extracts of Mulberry and Ginger in an Animal Model of Metabolic Syndrome. Oxidative Medicine and Cellular Longevity،Vol. 2019, no. 2019, pp.1-19.
https://search.emarefa.net/detail/BIM-1204383

Modern Language Association (MLA)

Palachai, Nut…[et al.]. Antimetabolic Syndrome Effect of Phytosome Containing the Combined Extracts of Mulberry and Ginger in an Animal Model of Metabolic Syndrome. Oxidative Medicine and Cellular Longevity No. 2019 (2019), pp.1-19.
https://search.emarefa.net/detail/BIM-1204383

American Medical Association (AMA)

Palachai, Nut& Wattanathorn, Jintanaporn& Muchimapura, Supaporn& Thukham-mee, Wipawee. Antimetabolic Syndrome Effect of Phytosome Containing the Combined Extracts of Mulberry and Ginger in an Animal Model of Metabolic Syndrome. Oxidative Medicine and Cellular Longevity. 2019. Vol. 2019, no. 2019, pp.1-19.
https://search.emarefa.net/detail/BIM-1204383

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1204383