Vitamin C Treatment Rescues Prelamin A-Induced Premature Senescence of Subchondral Bone Mesenchymal Stem Cells

Joint Authors

Jiang, Xiao-Xia
Qu, Yan-Nv
Zhang, Li
Wang, Ting
Zhang, He-Yang
Yang, Ze-Ji
Yuan, Fang-Fang
Wang, Yan
Li, Si-Wei
Xie, Xiao-Hua

Source

Stem Cells International

Issue

Vol. 2020, Issue 2020 (31 Dec. 2020), pp.1-16, 16 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2020-04-03

Country of Publication

Egypt

No. of Pages

16

Abstract EN

Aging is a predominant risk factor for many chronic conditions.

Stem cell dysfunction plays a pivotal role in the aging process.

Prelamin A, an abnormal processed form of the nuclear lamina protein lamin A, has been reported to trigger premature senescence.

However, the mechanism driving stem cell dysfunction is still unclear.

In this study, we found that while passaging subchondral bone mesenchymal stem cells (SCB-MSCs) in vitro, prelamin A accumulation occurred concomitantly with an increase in senescence-associated β-galactosidase (SA-β-Gal) expression.

Unlike their counterparts, SCB-MSCs with prelamin A overexpression (MSC/PLA) demonstrated decreased proliferation, osteogenesis, and adipogenesis but increased production of inflammatory factors.

In a hind-limb ischemia model, MSC/PLA also exhibited compromised therapy effect.

Further investigation showed that exogenous prelamin A triggered abnormal nuclear morphology, DNA and shelterin complex damage, cell cycle retardation, and eventually cell senescence.

Changes in gene expression profile were also verified by microarray assay.

Interestingly, we found that ascorbic acid or vitamin C (VC) treatment could inhibit prelamin A expression in MSC/PLA and partially reverse the premature aging in MSC/PLA, with reduced secretion of inflammatory factors and cell cycle arrest and resistance to apoptosis.

Importantly, after VC treatment, MSC/PLA showed enhanced therapy effect in the hind-limb ischemia model.

In conclusion, prelamin A can accelerate SCB-MSC premature senescence by inducing DNA damage.

VC can be a potential therapeutic reagent for prelamin A-induced aging defects in MSCs.

American Psychological Association (APA)

Qu, Yan-Nv& Zhang, Li& Wang, Ting& Zhang, He-Yang& Yang, Ze-Ji& Yuan, Fang-Fang…[et al.]. 2020. Vitamin C Treatment Rescues Prelamin A-Induced Premature Senescence of Subchondral Bone Mesenchymal Stem Cells. Stem Cells International،Vol. 2020, no. 2020, pp.1-16.
https://search.emarefa.net/detail/BIM-1207693

Modern Language Association (MLA)

Qu, Yan-Nv…[et al.]. Vitamin C Treatment Rescues Prelamin A-Induced Premature Senescence of Subchondral Bone Mesenchymal Stem Cells. Stem Cells International No. 2020 (2020), pp.1-16.
https://search.emarefa.net/detail/BIM-1207693

American Medical Association (AMA)

Qu, Yan-Nv& Zhang, Li& Wang, Ting& Zhang, He-Yang& Yang, Ze-Ji& Yuan, Fang-Fang…[et al.]. Vitamin C Treatment Rescues Prelamin A-Induced Premature Senescence of Subchondral Bone Mesenchymal Stem Cells. Stem Cells International. 2020. Vol. 2020, no. 2020, pp.1-16.
https://search.emarefa.net/detail/BIM-1207693

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1207693