Metformin Delays Satellite Cell Activation and Maintains Quiescence

Joint Authors

Pavlidou, Theodora
Marinkovic, Milica
Rosina, Marco
Fuoco, Claudia
Vumbaca, Simone
Gargioli, Cesare
Castagnoli, Luisa
Cesareni, Gianni

Source

Stem Cells International

Issue

Vol. 2019, Issue 2019 (31 Dec. 2019), pp.1-19, 19 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2019-04-24

Country of Publication

Egypt

No. of Pages

19

Abstract EN

The regeneration of the muscle tissue relies on the capacity of the satellite stem cell (SC) population to exit quiescence, divide asymmetrically, proliferate, and differentiate.

In age-related muscle atrophy (sarcopenia) and several dystrophies, regeneration cannot compensate for the loss of muscle tissue.

These disorders are associated with the depletion of the satellite cell pool or with the loss of satellite cell functionality.

Recently, the establishment and maintenance of quiescence in satellite cells have been linked to their metabolic state.

In this work, we aimed to modulate metabolism in order to preserve the satellite cell pool.

We made use of metformin, a calorie restriction mimicking drug, to ask whether metformin has an effect on quiescence, proliferation, and differentiation of satellite cells.

We report that satellite cells, when treated with metformin in vitro, ex vivo, or in vivo, delay activation, Pax7 downregulation, and terminal myogenic differentiation.

We correlate the metformin-induced delay in satellite cell activation with the inhibition of the ribosome protein RPS6, one of the downstream effectors of the mTOR pathway.

Moreover, in vivo administration of metformin induces a belated regeneration of cardiotoxin- (CTX-) damaged skeletal muscle.

Interestingly, satellite cells treated with metformin immediately after isolation are smaller in size and exhibit reduced pyronin Y levels, which suggests that metformin-treated satellite cells are transcriptionally less active.

Thus, our study suggests that metformin delays satellite cell activation and differentiation by favoring a quiescent, low metabolic state.

American Psychological Association (APA)

Pavlidou, Theodora& Marinkovic, Milica& Rosina, Marco& Fuoco, Claudia& Vumbaca, Simone& Gargioli, Cesare…[et al.]. 2019. Metformin Delays Satellite Cell Activation and Maintains Quiescence. Stem Cells International،Vol. 2019, no. 2019, pp.1-19.
https://search.emarefa.net/detail/BIM-1209223

Modern Language Association (MLA)

Pavlidou, Theodora…[et al.]. Metformin Delays Satellite Cell Activation and Maintains Quiescence. Stem Cells International No. 2019 (2019), pp.1-19.
https://search.emarefa.net/detail/BIM-1209223

American Medical Association (AMA)

Pavlidou, Theodora& Marinkovic, Milica& Rosina, Marco& Fuoco, Claudia& Vumbaca, Simone& Gargioli, Cesare…[et al.]. Metformin Delays Satellite Cell Activation and Maintains Quiescence. Stem Cells International. 2019. Vol. 2019, no. 2019, pp.1-19.
https://search.emarefa.net/detail/BIM-1209223

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1209223